

| Name: |       |   | <br> | • • • • • • • | <br>• • • • • • • |  |
|-------|-------|---|------|---------------|-------------------|--|
|       |       |   |      |               |                   |  |
| Maths | Class | • |      |               |                   |  |

# Year 12 Mathematics Extension 1

**HSC Course** 

Assessment 1

December, 2020

Time allowed: 90 minutes

## General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A reference sheet is provided.

Multiple Choice Section 1

Questions 1-7

7 Marks

Section II Questions 8-12

60 Marks

## Section I

#### 7 marks

## **Attempt Questions 1-7**

#### Allow about 10 minutes for this section

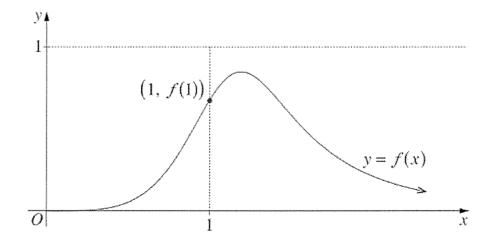
Use the multiple choice answer sheet for Questions 1-7.

- 1. The polynomial  $P(x) = x^3 4x^2 6x + k$  has a factor of x 2. What is the value of k?
  - (A) 2
  - (B) 12
  - (C) 20
  - (D) 36
- 2. Which of the following is a simplification of  $4log_e\sqrt{e^x}$ ?
  - (A)  $\frac{1}{2}x$
  - (B) 2x
  - (C)  $x^2$
  - (D)  $4\sqrt{x}$
- 3. How many arrangements of the letters of the word 'OLYMPIC' are possible if the C and L are to be together?
  - (A) 120
  - (B) 240
  - (C) 720
  - (D) 1440
- 4. If  $\frac{dP}{dt} = 0.2(P-10)$  and P = 30 when t = 0, which of the following is an expression for P?
  - (A)  $P = 10 + 20e^{0.2t}$
  - (B)  $P = 20 + 10e^{0.2t}$
  - (C)  $P = 20 + 30e^{0.2t}$
  - (D)  $P = 30 + 20e^{0.2t}$

5. Given that  $f(x) = e^x - 1$ , and  $y = f^{-1}(x)$ , find an expression for  $\frac{dy}{dx}$ 

$$(A) \frac{1}{e^{x}-1}$$

(B) 
$$\frac{1}{x+1}$$


(D) 
$$ln(x+1)$$

6. A body of still water has suffered an oil spill and a circular oil slick is floating on the surface of the water.

The area of the oil slick is increasing by  $0.1\ m^2/minute$ . At what rate is the radius increasing when the radius is 0.3?

- (A) 0.161 m/minute
- (B) 0.03 m/minute
- (C) 0.0515 m/minute
- (D) 0.0531 m/minute
- 7. The diagram shows the graph of y = f(x).

You can assume that the marked point is **not** a point of inflexion.



2

Which of the following is a correct statement?

(A) 
$$f''(1) < f(1) < 1 < f'(1)$$

(B) 
$$f''(1) < f'(1) < f(1) < 1$$

(C) 
$$f(1) < 1 < f'(1) < f''(1)$$

(D) 
$$f'(1) < f(1) < 1 < f''(1)$$

## Section II

#### Total marks - 60

## **Attempt Question 8-12**

#### Allow about 1 hour and 20 minutes for this section

## Begin each question on a NEW page

In Questions 8-12, your responses should include relevant mathematical reasoning and/or calculations.

#### Question 8 (12 marks)

a) Differentiate the following with respect to x

$$y = e^x log_e(2x)$$

(ii) 
$$y = 6^{5x}$$

(iii) 
$$y = ln\left(\frac{4x+1}{3x-2}\right)$$

b) Ron, Harry and seven friends arrange themselves around a circular table.

- (ii) If they are seated randomly, what is the probability that Ron and Harry are not 2 sitting next to each other?
- c) Solve the equation  $3^{x-1} = 5$  correct to 2 decimal places

d) Solve 
$$(n+2)! = 72n!$$

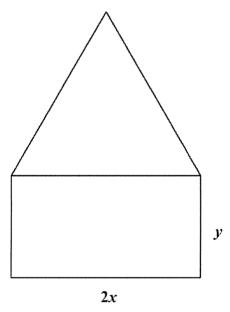
## Question 9 (12 marks)

a) Find 
$$\frac{d}{dx}(log_7x^2)$$

1

- b) A set of 20 students is made up of 10 students from Year 11 and 10 students from Year 12. Five students are to be selected from the set of 20. The order is unimportant.
  - (i) What is the total number of possible selections?

1


(ii) What is the total number of selections, if there are at least two Year 11 students and at least 2 Year 12 students in the group of 5?

1

c) Find the term independent of x in the expansion of  $\left(2x^2 - \frac{3}{r}\right)^9$ 

3

d) A window is made by joining a rectangle to an equilateral triangle with dimensions as shown. The perimeter of the window is 18 metres.



**NOT TO SCALE** 

(i) Show that the area (A) of the window is given by

$$A = 18x - x^2(6 - \sqrt{3})$$

2

4

(ii) Hence find the dimensions of the window that would allow the maximum amount of light to enter the window. Give your answer to the nearest centimetre.

#### **End of Question 9**

#### Question 10 (12 marks)

a) Let  $f(x) = log_e[(x-3)(5-x)]$ . What is the domain of f(x)?

2

- b) The position of a particle moving along the x-axis is given by  $x = t^2 e^{2-t}$ , where x is in metres and t is time in seconds.
- (i) Find an expression for the velocity in terms of time

1

(ii) Show that the particle is initially at rest

1

(iii) Find the time for which the particle is next at rest

1

(iv) What happens to the particle as time increases indefinitely?

1

c) Melvin the Martian has an infinite number of purple, green, black and yellow socks in a drawer.

If Melvin is pulling out socks in the dark, what is the smallest number of socks that Melvin must pull out of the drawer to guarantee getting ten socks of the same colour?

1

d) A can of soft drink at temperature T degrees is removed from a fridge and placed in a room that has a constant temperature of A degrees Celsius. The rate at which the can soft drink warms can be expressed using the equation

 $\frac{dT}{dt} = -k(T-A)$  where t is the time in minutes after the can is placed in the room, and k is a positive constant.

(i) Show that  $T = A + Pe^{-kt}$  satisfies the equation, where P is a constant

1

(ii) If the room temperature is  $30^{\circ}$ C and the soft drink warms from  $3^{\circ}$ C to  $15^{\circ}$ C in the first 10 minutes, find the exact value of k

2

(iii) Find the time taken for the temperature of the can to increase by another 12°C (answer to the nearest minute)

2

#### **End of Question 10**

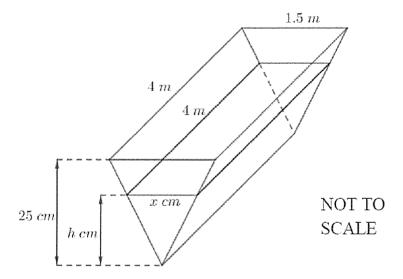
## Question 11 (12 marks)

- a) The polynomial equation  $4x^3-12x^2+5x+6=0$  has roots  $\alpha,\beta$  and  $\gamma$ . 3

  It is known that one of the roots is the sum of the other two.

  Find the value of  $\alpha,\beta$  and  $\gamma$
- b) Consider the function  $f(x) = x^4 2x^2$ 
  - (i) Find the coordinates of any stationary points and determine their nature 3
  - (ii) Draw a neat sketch y = f(x), showing the x and y-intercepts and the coordinates of the stationary points
  - (iii) Find the largest domain containing the origin for which f(x) has an inverse function,  $f^{-1}(x)$
  - (iv) State the domain of  $f^{-1}(x)$
  - (v) Find the gradient of  $y = f^{-1}(x)$  at  $x = -\frac{1}{2}$

**End of Question 11** 


a) Find 
$$\frac{d}{dx} \left( ln \left( x^{\frac{1}{x}} \right) \right)$$
 for  $x > 0$ 

- b) How many arrangements of the word 'MAMMOTH' can be made if only 5 letters are used?
- 2

2

c) An open flat topped water trough in the shape of a triangular prism is being emptied through a hole in its base at a constant rate of  $18~000~cm^3$  per second. Its top measures 1.5 metres by 4 metres and its triangular end has a vertical height of 25 centimetres.

When the depth is h centimetres, the water surface measures x centimetres by 4 metres.



- (i) Use similar triangles to show that when the water depth is h centimetres, the volume  $V\ cm^3$  2 of water in the trough is given by  $V=1200h^2$
- (ii) Find the rate at which the depth of water is changing when h = 20 cm
- d) Consider the binomial expansion

$$1 + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n = (1+x)^n$$

Show that, if n is even:

$$4 \times 1 \times \binom{n}{2} + 8 \times 3 \times \binom{n}{4} + 12 \times 5 \times \binom{n}{6} + \dots + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$$

**End of Question 12** 

End of Examination ©

| Mathematics Extension 1 Term 42        | 2020 solutions                                                   |
|----------------------------------------|------------------------------------------------------------------|
| 1. P(2) = 0                            | 6. A=πr²                                                         |
| $2^{3}-4(2)^{2}-6(2)+k=0$              | $\frac{dA}{dr} = 2\pi r \qquad \frac{dA}{dt} = 0 \cdot  m^2/min$ |
| -20+k=0                                |                                                                  |
| k=20 (C)                               | $\frac{dr}{dt} = \frac{dr}{dA} \times \frac{dA}{dL}$             |
|                                        | $= \frac{1}{2\pi r} \times 0.1$                                  |
| 2. 4 loge Jex = loge exx4              | when $r=0.3$ ,                                                   |
| $= \log_e e^{2x}$                      | $\frac{dr}{dl} = \frac{0 \cdot l}{2\pi(0-3)}$                    |
| = 2× (B)                               | σ 2π(0-3)                                                        |
|                                        | =0-05305 D                                                       |
| 3. 6! x 2! = 1440 (D)                  |                                                                  |
|                                        | 7.A                                                              |
| $4. \frac{dP}{dt} = 0.2(P-10)$         |                                                                  |
| P=B+Aekt B=10,k=0.2                    |                                                                  |
| P = 10 + Ae <sup>0.2t</sup>            |                                                                  |
| when t=0, p= 30                        |                                                                  |
| 30 = 10 + Ae°                          |                                                                  |
| A = 20                                 |                                                                  |
| P = 10+20e0-2+ A                       |                                                                  |
|                                        |                                                                  |
| 5. $f(x) = e^{x-1}$<br>$y = e^{x} - 1$ | ·                                                                |
| y=ex-1                                 |                                                                  |
| Inverse: $x = e^y - 1$                 |                                                                  |
| $x+1=e^{y}$                            |                                                                  |
| $ln(x+1) = ln(e^y)$                    |                                                                  |
| •                                      |                                                                  |
| h(x+1) = y $y =  h(x+1)$               |                                                                  |
|                                        |                                                                  |

 $\frac{dy}{dx} = \frac{1}{x+1}$ 

| Question 8                                              |                     |
|---------------------------------------------------------|---------------------|
| a) (i) $y = e^{x} \log_{e}(2x)$ $u = e^{x}$ $v = e^{x}$ | loge (2x)           |
| $\frac{du}{du} = e^{\infty} \frac{dv}{dv}$              |                     |
| $y'=e^{x}\log_{e}(2x)+\frac{e^{x}}{x}$                  |                     |
| √ x                                                     |                     |
| $(ii)y = 6^{5x}$                                        |                     |
| y'= 5.1n6.65x                                           |                     |
|                                                         |                     |
| $(iii) y = \ln \left( \frac{4x+1}{3x-2} \right)$        |                     |
| $y = \ln(4x+1) - \ln(3x-2)$                             |                     |
| $y' = \frac{4}{4x+1} - \frac{3}{3x-2}$                  |                     |
| $=\frac{4(3x-2)-3(4x+1)}{(4x+1)(3x-2)}$                 | d) $(n+2)! = 72n!$  |
| $=\frac{1}{(4x+1)(3x-2)}$                               | (n+2)(n+1)n! = 72n! |
| $= \frac{ 2x - 8 -  2x - 3 }{(4x + 1)(3x - 2)}$         | (n+2)(n+1) = 72     |
| 11                                                      | $h^2 - 3h + 2 = 72$ |
| $\frac{-}{(4x+1)(3x-2)}$                                | $h^2 - 3h - 70 = 0$ |
|                                                         | (n-7)(n+10)=0       |
| b)(i)8!=40320                                           | N=7, N=-10          |
| (ii) P(Harry and Ron sit together) = $\frac{2!7!}{8!}$  | but n 30 : n=7      |
| = +                                                     |                     |
| : P(Harry and Ron sit together) = 1 - 1                 |                     |
| = 3/4                                                   | ,                   |
|                                                         |                     |
| c) $3^{\infty-1} = 5$                                   | ·                   |
| $(x-1)\ln 3 = \ln 5$                                    |                     |
| $x = \ln 5$                                             |                     |
| $x = \frac{\ln 5}{\ln 3}$<br>x = 2 - 46(2d.p.)          |                     |

| Question 9                                                                                                   |                                                         |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| $a) \frac{d}{dx} \left( \log_{7} x^{2} \right) = \frac{d}{dx} \left( \frac{\log(x^{2})}{\log e^{7}} \right)$ | $A = 2xy + \frac{1}{2}(2x)(2x)\sin 60^{\circ}$          |
| ac (loge+)                                                                                                   | $=2xy+2x^2.\sqrt{3}$                                    |
| $=\frac{1}{\log e^{\frac{2}{7}}}\cdot\frac{2}{x}$                                                            | $=2xy+\sqrt{3}x^{2}$                                    |
| = <u>2</u><br>xloge7                                                                                         | $=2x(9-3x)+\sqrt{3}x^2$                                 |
| xloge7                                                                                                       | $= 18\infty - 6\infty^2 + \sqrt{3}\infty^2$             |
| b)(i) 20C5 = 15 504                                                                                          | $=18x-x^2(6-\sqrt{3})$                                  |
| $(ii)^{10}C_2 \times {}^{10}C_3 + {}^{10}C_3 \times {}^{10}C_2$                                              |                                                         |
| = 10 800                                                                                                     | $(i) \frac{dA}{dx} = 18 - 12x + 2\sqrt{3}x$             |
| · · · · · · · · · · · · · · · · · · ·                                                                        | Maximum amount of light occurs when $\frac{dA}{dx} = 0$ |
| c) $(2x^2 - \frac{3}{x})^9$                                                                                  | i.e. $18 - x(12 - 2\sqrt{3}) = 0$                       |
| General term: $T_{r+1} = \binom{n}{r} x^{n-r} a^r$                                                           | $x = \frac{18}{12 - 2\sqrt{3}}$                         |
| r+1 (r)                                                                                                      | 12-2/3                                                  |
| $T_{r+1} = {9 \choose r} (2x^2)^{9-r} (-3x^{-1})^r$                                                          | = 9 - 13                                                |
| $= \binom{9}{7} 2^{9-r} (-3)^r x^{18-2r-r}$                                                                  | Check nature:                                           |
| $= \binom{9}{7} 2^{9-r} (-3)^r x^{18-3r}$                                                                    | $\frac{d^2A}{dx^2} = -12 + 2\sqrt{3}$                   |
| Term independent of x:                                                                                       | =-8·5 <0                                                |
| 18-3r=0                                                                                                      | : Maximum when $x = \frac{9}{6-\sqrt{3}}$               |
| r=6                                                                                                          | Dimensions:                                             |
| $T_{7} = {9 \choose 6} 2^{9-6} (-3)^{6} x^{0}$                                                               | $2\infty = 2\left(\frac{9}{6-\sqrt{3}}\right)$          |
| = 489 888                                                                                                    | =4.22M                                                  |
|                                                                                                              | =422cm                                                  |
| d)(i) $P = 6x + 2y$ $P = 18$                                                                                 | $y = 9 - 3\left(\frac{9}{6 - \sqrt{3}}\right)$          |
| 6x + 2y = 18                                                                                                 | =2.6739m                                                |
| 2y = 18 - 6x                                                                                                 | = 267 cm                                                |
| $y = 9 - 3\infty$                                                                                            |                                                         |
| J                                                                                                            |                                                         |
|                                                                                                              |                                                         |

| Question 10                                                                                     |                                                            |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| a) $(x-3)(5-x) > 0$                                                                             | c) With 9 purple, 9 green, 9 black and                     |
| <u></u>                                                                                         | 9 yellow socks, Melvin still does not                      |
|                                                                                                 | have 10 socks of a single colour.                          |
| \$ 5°                                                                                           | Current total = 9x4                                        |
|                                                                                                 | = 36                                                       |
| Domain: $3 < x < 5$                                                                             | -: The 37th sock is needed to                              |
|                                                                                                 | meet the required condition.                               |
| b)(i) $x = t^2 e^{2-t}$ $u = t^2$ $v = e^{2-t}$                                                 |                                                            |
| b)(i) $x = t^2 e^{2-t}$ $u = t^2$ $v = e^{2-t}$ $\frac{du}{dt} = 2t$ $\frac{dv}{dt} = -e^{2-t}$ | $d)(i)T = A + Pe^{-kt}$                                    |
|                                                                                                 | $\frac{dT}{dt} = -k \cdot Pe^{-kt}$                        |
| $v = -t^2e^{2-t} + 2te^{2-t}$                                                                   | $=-k(T-A)$ as $Pe^{-kt}=T-A$                               |
|                                                                                                 |                                                            |
| (ii) when $t=0$ , $v=-0^2e^{2-t}+2(0)e^{2-0}$                                                   | (ii)t=0,T=3 A=30                                           |
| ·V =0                                                                                           | $3 = 30 + Pe^{\circ}$                                      |
| : initially at rest                                                                             | P=-27                                                      |
|                                                                                                 | T=30-27e-kt                                                |
| (iii) at rest when v=0                                                                          | t=10,T=15                                                  |
| $-t^2e^{2-t}+2te^{2-t}=0$                                                                       | $15 = 30 - 27e^{-10k}$                                     |
| $te^{2-t}(-t+2)=0$                                                                              | $ 5 = 27e^{-10k}$                                          |
| t=0, t=2                                                                                        | 15 -10k<br>27 = e                                          |
| :. next at rest when t=2                                                                        | $\ln\left(\frac{15}{27}\right) = \ln\left(e^{-10k}\right)$ |
|                                                                                                 | $\left  h\left(\frac{15}{27}\right) = -10k \right $        |
| $(iv)$ as $t \rightarrow \infty$ , $\infty \rightarrow 0$                                       | $k = -\frac{1}{10} \ln \left( \frac{15}{27} \right)$       |
| ,                                                                                               |                                                            |
| ·                                                                                               |                                                            |
|                                                                                                 |                                                            |
|                                                                                                 |                                                            |

| 10.d)(iii) Temperature currently 15°C.                            | Question 11                                                                           |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| ·· Will increase to 15+12=27°C                                    | a) $4x^3 - 12x^2 + 5x + 6 = 0$                                                        |
| $27 = 30 - 27e^{-kt}$                                             | $x+\beta+x=\frac{-b}{a}$                                                              |
| $3 = 27e^{-kt}$                                                   | $x+\beta+\gamma=3-0$                                                                  |
| $\frac{3}{27} = e^{-kt}$                                          | $\alpha\beta + \alpha\gamma + \beta\gamma = \frac{5}{4} - 2$                          |
| $\ln\left(\frac{1}{9}\right) = \ln\left(e^{-kt}\right)$           | $\alpha \beta \gamma = -\frac{3}{3} - 3$                                              |
| $ln\left(\frac{1}{9}\right) = -kt$                                | One root is the sum of the other two:                                                 |
| $t = \ln(\frac{1}{9})$                                            | x=B+y -0                                                                              |
|                                                                   | sub @ into 0                                                                          |
| $t = \frac{\ln(\frac{1}{9})}{-(-\frac{1}{10}\ln(\frac{15}{27}))}$ | d+ d = 3                                                                              |
| -(-10 lh (27)                                                     | 2x=3                                                                                  |
| t=37-38                                                           | χ= <u>3</u>                                                                           |
| :: Time taken to increase by                                      | Sub x= 3 into 3                                                                       |
| another 12°C is 37-38-10                                          | $\frac{3}{2}\beta \hat{\lambda} = \frac{-3}{2}$                                       |
| = 27 minutes                                                      | $\beta y = -1 - 6$ and $\beta + y = \frac{3}{2} - 6$                                  |
| ,                                                                 | From $6$ , $\beta = \frac{3}{2} - \gamma$                                             |
|                                                                   | subinto (5)                                                                           |
|                                                                   | γ( <del>3</del> -γ)=-1                                                                |
|                                                                   | $\frac{3}{2}\gamma - \gamma^2 = -1$                                                   |
|                                                                   | y <sup>2</sup> -3/2 y-1=0                                                             |
|                                                                   | $2y^2 - 3y - 2 = 0$                                                                   |
|                                                                   | $(\gamma-2)(2\gamma+1)=0$                                                             |
|                                                                   | $\gamma=2, \ \gamma=-\frac{1}{2}$                                                     |
|                                                                   | $\beta = \frac{3}{2} - 2$ or $\beta = \frac{3}{2} - \frac{1}{2}$ = $-\frac{1}{2}$ = 2 |
|                                                                   | =-1 =2                                                                                |
|                                                                   | $\therefore \alpha = \frac{3}{2}, \beta = -\frac{1}{2}, \gamma = 2$                   |
|                                                                   | or x=3, B=2, x=-1                                                                     |

| $(1.b)(i)f(x) = x^4 - 2x^2$                   | (ii) y                                                                        |
|-----------------------------------------------|-------------------------------------------------------------------------------|
| $f'(x) = 4x^3 - 4x$                           |                                                                               |
| Stationary points occur when f'(x)=0          | 1 1                                                                           |
| i.e. $4x^3 - 4x = 0$                          |                                                                               |
| $4x(x^2-1)=0$                                 | (0,0)                                                                         |
| $x = 0, \pm 1$                                | -2-12-1 1/2 2                                                                 |
| when ==0, y=0                                 | (-1,-1) (1,-1)                                                                |
| when $\infty = 1, y = -1$                     |                                                                               |
| when $\infty = -1$ , $y = -1$                 | <u> </u>                                                                      |
| :- Stationary points at (0,0), (1,-1) 4 (-1,- | ) $x$ -intercepts: $x^4-2x^2=0$                                               |
| Determine nature:                             | $x^{2}(x^{2}-2)=0$                                                            |
| $f''(x) = 12x^2 - 4$                          | $x=0,\pm \sqrt{2}$                                                            |
| at $x = 0$ , $f''(0) = -4 < 0$                |                                                                               |
| Maximum turning point at (0,0)                | (iii) Domain: 0≤∞ ≤1                                                          |
| $at x=1, f''(1)=12(1)^2-4$                    |                                                                               |
| ·· Minimum turning point at (1,-1)            | (iv) Restricted range of $y = f(x)$ is $-1 \le y \le 0$                       |
| at $x = -1$ , $f''(-1) =  2(-1)^2 - 4$        | Domain of $y=f^{-1}(x)$ is $-1 \le x \le 0$                                   |
| Minimum turing point at (-1,-1)               |                                                                               |
|                                               | $(v)y = x^4 - 2x^2$                                                           |
|                                               | Inverse function: $x = y^4 - 2y^2$                                            |
|                                               | $\frac{dx}{dy} = 4y^3 - 4y$                                                   |
|                                               | BW $\frac{dy}{dx} = \frac{1}{dx}$                                             |
|                                               | de dy                                                                         |
|                                               | $= \frac{1}{4(-\frac{1}{2})^3 - 4(-\frac{1}{2})}  \text{as } y = \frac{1}{2}$ |
|                                               | = -\frac{1}{-\frac{1}{2}+2}                                                   |
|                                               | = 2                                                                           |
|                                               |                                                                               |
|                                               |                                                                               |

Student Name:

Teacher Name:

Question 12

$$a)\frac{d}{dx}\left(\ln\left(x^{\frac{1}{2}}\right)\right) = \frac{d}{dx}\left(\frac{1}{x}\ln x\right)$$

$$u=x^{-1}$$
  $v=$ 

$$\frac{dy}{dx} = -x^{-2}$$

$$\frac{dv}{dx} = \frac{1}{x}$$

$$\frac{-\ln x}{x^2} + \frac{1}{x^2}$$

$$=\frac{1}{x^2}\left(|-|hx\right)$$

b) Case 1 
$$(1 M) M = - = 5! ways$$

Case 2 
$$(2 M's)MM = \frac{5!}{2!} \times {}^{4}C_{3}$$

Case 3 
$$(3M's)MMM = \frac{5!}{3!} \times {}^{4}C_{2}$$

Total arrangements = 
$$5! + \frac{5!}{2!} \times {}^{4}C_{3} + \frac{5!}{3!} \times {}^{4}C_{2}$$

c) (i) By similar triangles, 
$$\frac{\infty}{150} = \frac{h}{25}$$

$$x = 6h$$

$$= |200h^2$$

$$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt} = -18000 \text{ cm}^3/\text{s}$$

$$V = 1200 h^2$$

| 2.(i) continued   $\frac{1}{2400k}$   $\frac{1}{2400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $\frac{dh}{dr} = \frac{1}{2400h}$ when h = 20 cm, $\frac{dh}{dt} = \frac{1}{2400 \times 20} \times -18000$ $= -\frac{3}{8}$ $= -0 \cdot 375 \text{ cm/s}$ $\therefore \text{ the water is falling at a rate of } 0 \cdot 375 \text{ cm/s}$ $\frac{d}{dt} = \frac{1}{2400 \times 20} \times -18000$ $\frac{d}{d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12-(ii) continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| when $h = 20 \text{ cm}$ , $\frac{dh}{dt} = \frac{1}{2400 \times 20} \times -18000$ $\frac{dh}{dt} = \frac{1}{2400$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{dh}{dt} = \frac{1}{2400h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| $\frac{dh}{dt} = \frac{1}{2400 \times 20} \times -18000$ $= -\frac{3}{8}$ $= -0.375 \text{ cm/s}$ $\therefore \text{ the water is falling at a rate of } 0.375 \text{ cm/s}$ $\frac{d}{dt} = \frac{1}{2400 \times 20} \times -18000$ $\frac{d}{dt} = \frac{1}{8}$ $= -0.375 \text{ cm/s}$ $\frac{d}{dt} = \frac{1}{8}$ $\frac{d}{dt} = \frac{1}{1}$ $\frac{d}{dt} = \frac{1}{8}$ $\frac{d}{dt} = \frac{1}{1}$ $\frac{d}{dt}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| $ = -\frac{3}{8} $ $ = -0.375 \text{ cm/s} $ $ \therefore \text{ the water is falling at a rate of } 0.375 \text{ cm/s} $ $ \text{d)}  + \binom{n}{n} \times + \binom{n}{2} \times \binom{n}{$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| the water is falling at a rate of $0.375$ cm/s  d) $1+\binom{n}{1}x+\binom{n}{2}x^2+\binom{n}{3}x^3++\binom{n}{n}x^n=(1+x)^n$ Pifferentiate both sides w.r.t $x$ $\binom{n}{1}+2\binom{n}{2}x+3\binom{n}{3}x^2+4\binom{n}{4}x^3++n\binom{n}{n}x^{n-1}-N(1+x)^{n-1}$ Differentiate both sides w.r.t $x$ $2\binom{n}{2}+2x3\binom{n}{3}x+3x4\binom{n}{4}x^2++n(n-1)\binom{n}{n}x^{n-2}=n(n-1)(1+x)^{n-2}$ Let $x=1$ $2\binom{n}{2}+2x3\binom{n}{3}+3x4\binom{n}{4}++n(n-1)\binom{n}{n}=n(n-1)\binom{n}{2}^{n-2}$ Let $x=-1$ $2\binom{n}{2}-2x3\binom{n}{3}+3x4\binom{n}{4}+n(n-1)\binom{n}{n}(-1)^{n-2}=0$ $2\binom{n}{2}-2x3\binom{n}{3}+3x4\binom{n}{4}+n(n-1)\binom{n}{n}(-1)^{n-2}=0$ Adding $0$ and $0$ $\frac{(-1)^{n-2}}{n}=1$ since $n$ is even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dt 2400 × 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        |
| the water is falling at a rate of $0.375$ cm/s  d) $1+\binom{n}{1}x+\binom{n}{2}x^2+\binom{n}{3}x^3++\binom{n}{n}x^n=(1+x)^n$ Pifferentiate both sides w.r.t $x$ $\binom{n}{1}+2\binom{n}{2}x+3\binom{n}{3}x^2+4\binom{n}{4}x^3++n\binom{n}{n}x^{n-1}-N(1+x)^{n-1}$ Differentiate both sides w.r.t $x$ $2\binom{n}{2}+2x3\binom{n}{3}x+3x4\binom{n}{4}x^2++n(n-1)\binom{n}{n}x^{n-2}=n(n-1)(1+x)^{n-2}$ Let $x=1$ $2\binom{n}{2}+2x3\binom{n}{3}+3x4\binom{n}{4}++n(n-1)\binom{n}{n}=n(n-1)\binom{n}{2}^{n-2}$ Let $x=-1$ $2\binom{n}{2}-2x3\binom{n}{3}+3x4\binom{n}{4}+n(n-1)\binom{n}{n}(-1)^{n-2}=0$ $2\binom{n}{2}-2x3\binom{n}{3}+3x4\binom{n}{4}+n(n-1)\binom{n}{n}(-1)^{n-2}=0$ Adding $0$ and $0$ $\frac{(-1)^{n-2}}{n}=1$ since $n$ is even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = - <u>3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7        |
| d) $ +\binom{n}{1}x+\binom{n}{2}x^2+\binom{n}{3}x^3+\ldots+\binom{n}{n}x^n=(1+x)^n$ Pifferentiate both sides w.r.t $x$ $\binom{n}{1}+2\binom{n}{2}x+3\binom{n}{3}x^2+4\binom{n}{4}x^3+\ldots+n\binom{n}{n}x^{n-1}-N(1+x)^{n-1}$ Differentiate both sides w.r.t $x$ $2\binom{n}{2}+2x^3\binom{n}{3}x+3x^4\binom{n}{4}x^2+\ldots+n(n-1)\binom{n}{n}x^{n-2}=n(n-1)(1+x)^{n-2}$ Let $x=1$ $2\binom{n}{2}+2x^3\binom{n}{3}+3x^4\binom{n}{4}+\ldots+n(n-1)\binom{n}{n}=n(n-1)\binom{n}{2}^{n-2}=0$ Let $x=-1$ $2\binom{n}{2}-2x^3\binom{n}{3}+3x^4\binom{n}{4}-\ldots+n(n-1)\binom{n}{n}\binom{n}{2}-1$ Pifferentiate both sides w.r.t $x$ $2\binom{n}{2}+2x^3\binom{n}{3}x+3x^4\binom{n}{4}+\ldots+n(n-1)\binom{n}{n}x^{n-2}=n(n-1)(1+x)^{n-2}=0$ Let $x=-1$ $2\binom{n}{2}-2x^3\binom{n}{3}+3x^4\binom{n}{4}-\ldots+n(n-1)\binom{n}{n}\binom{n}{2}-1$ Adding $0$ and $0$ $-\frac{(-1)^{n-2}-1}{2}$ since $n$ is even  Adding $0$ and $0$ $-\frac{(-1)^{n-2}-1}{2}$ since $n$ is even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =-0.375  cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| Differentiate both sides w.r.t $x$ $\binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^{2} + 4\binom{n}{4}x^{3} + + n\binom{n}{n}x^{n-1} + n\binom{n}{n}x^{n-1}$ Differentiate both sides w.r.t $x$ $2\binom{n}{2} + 2x3\binom{n}{3}x + 3x4\binom{n}{4}x^{2} + + n(n-1)\binom{n}{n}x^{n-2} = n(n-1)(1+x)^{n-2}$ Let $x = 1$ $2\binom{n}{2} + 2x3\binom{n}{3} + 3x4\binom{n}{4} + + n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2} = 0$ Let $x = -1$ $2\binom{n}{2} - 2x3\binom{n}{3} + 3x4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ $2\binom{n}{2} - 2x3\binom{n}{3} + 3x4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ Adding $0$ and $0$ $ + x1\binom{n}{2} + 8x3\binom{n}{4} + 12x5\binom{n}{6} + + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :- the water is falling at a rate of 0.375 cm/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Differentiate both sides w.r.t $x$ $\binom{n}{1} + 2\binom{n}{2}x + 3\binom{n}{3}x^{2} + 4\binom{n}{4}x^{3} + + n\binom{n}{n}x^{n-1} + n\binom{n}{n}x^{n-1}$ Differentiate both sides w.r.t $x$ $2\binom{n}{2} + 2x3\binom{n}{3}x + 3x4\binom{n}{4}x^{2} + + n(n-1)\binom{n}{n}x^{n-2} = n(n-1)(1+x)^{n-2}$ Let $x = 1$ $2\binom{n}{2} + 2x3\binom{n}{3} + 3x4\binom{n}{4} + + n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2} = 0$ Let $x = -1$ $2\binom{n}{2} - 2x3\binom{n}{3} + 3x4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ $2\binom{n}{2} - 2x3\binom{n}{3} + 3x4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ Adding $0$ and $0$ $ + x1\binom{n}{2} + 8x3\binom{n}{4} + 12x5\binom{n}{6} + + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $d)  + \binom{n}{1} x + \binom{n}{2} x^2 + \binom{n}{3} x^3 + \dots + \binom{n}{n} x^n = (1+x)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Differentiate both sides w.r.t $\infty$ $2(\frac{n}{2}) + 2x^{3}(\frac{n}{3})x + 3x^{4}(\frac{n}{4})x^{2} + + n(n-1)(\frac{n}{n})x^{n-2} = n(n-1)(1+x)^{n-2}$ Let $x = 1$ $2(\frac{n}{2}) + 2x^{3}(\frac{n}{3}) + 3x^{4}(\frac{n}{4}) + + n(n-1)(\frac{n}{n}) = n(n-1)(2)^{n-2} = 0$ Let $x = -1$ $2(\frac{n}{2}) - 2x^{3}(\frac{n}{3}) + 3x^{4}(\frac{n}{4}) + n(n-1)(\frac{n}{n})(-1)^{n-2} = 0$ $(-1)^{n-2} = 1 \text{ since } n \text{ is even}$ Adding (1) and (2) $ + x^{2} + 1 + 2x^{2} + 2x^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $2\binom{n}{2} + 23\binom{n}{3}x + 3x + \binom{n}{4}x^{2} + + n(n-1)\binom{n}{n}x^{n-2} = n(n-1)(1+x)^{n-2}$ Let $x = 1$ $2\binom{n}{2} + 2x + 3\binom{n}{3} + 3x + \binom{n}{4} + + n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2} = 0$ Let $x = -1$ $2\binom{n}{2} - 2x + 3\binom{n}{3} + 3x + 4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ $2\binom{n}{2} - 2x + 3\binom{n}{3} + 3x + 4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ Adding $0$ and $0$ $\frac{(-1)^{n-2} - 1}{2} = 1 \text{ since } n \text{ is even}$ Adding $0$ and $0$ $\therefore 4x + 1\binom{n}{2} + 8x + 3\binom{n}{4} + 12x + 5\binom{n}{6} + + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\binom{n}{1} + 2\binom{n}{2} \times + 3\binom{n}{3} \times^2 + 4\binom{n}{4} \times^3 + \dots + n\binom{n}{n} \times^{n-1} + n\binom{n}{n} \times^$ |          |
| Let $x=1$ $2\binom{n}{2} + 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} + + n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2} - 0$ Let $x=-1$ $2\binom{n}{2} - 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ $(-1)^{n-2} = 1 \text{ since n is even}$ Adding ① and ② $\therefore 4 \times 1\binom{n}{2} + 8 \times 3\binom{n}{4} + 12 \times 5\binom{n}{6} + + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Differentiale both sides w.r.t oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Let $x=1$ $2\binom{n}{2} + 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} + + n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2} - 0$ Let $x=-1$ $2\binom{n}{2} - 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} + n(n-1)\binom{n}{n}(-1)^{n-2} = 0$ $(-1)^{n-2} = 1 \text{ since n is even}$ Adding ① and ② $\therefore 4 \times 1\binom{n}{2} + 8 \times 3\binom{n}{4} + 12 \times 5\binom{n}{6} + + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2(\frac{n}{2}) + 2x^{3}(\frac{n}{3})x + 3x^{4}(\frac{n}{4})x^{2} + + n(n-1)(\frac{n}{h})x^{n-2} = n(h-1)(1+x)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Let $x = -1$ $2\binom{n}{2} - 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} + h(h-1)\binom{n}{n}(-1)^{n-2} = 0$ $(-1)^{n-2} = 1 \text{ since n is even}$ Adding (1) and (2) $ + x \cdot 1\binom{n}{2} + 8 \times 3\binom{n}{4} + 12 \times 5\binom{n}{6} + + 2h(h-1)\binom{n}{n} = h(h-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $2\binom{n}{2}-2\times 3\binom{n}{3}+3\times 4\binom{n}{4}+h(h-1)\binom{n}{n}(-1)^{n-2}=0$ $(-1)^{n-2}\stackrel{?}{=}1 \text{ since n is even}$ Adding (1) and (2) $+2h(h-1)\binom{n}{n}=h(h-1)(2)^{n-2}$ $+2h(h-1)\binom{n}{n}=h(h-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\binom{n}{2} + 2\times 3\binom{n}{3} + 3\times 4\binom{n}{4} + \dots + n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0       |
| Adding () and (2) $ \frac{(-1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}}{(+1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}} $ $ \frac{(-1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}}{(+1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}} $ $ \frac{(-1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}}{(+1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Adding () and (2) $ \frac{(-1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}}{(+1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}} $ $ \frac{(-1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}}{(+1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}} $ $ \frac{(-1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}}{(+1)^{n-2} \int_{-1}^{\infty} 1 \operatorname{since } n \operatorname{is even}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\binom{n}{2} - 2 \times 3\binom{n}{3} + 3 \times 4\binom{n}{4} - \dots + N(n-1)\binom{n}{n}\binom{n}{n}\binom{-1}{n}^{n-2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        |
| Adding (1) and (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| $\therefore 4 \times 1\binom{n}{2} + 8 \times 3\binom{n}{4} + 12 \times 5\binom{n}{6} + \dots + 2n(n-1)\binom{n}{n} = n(n-1)(2)^{n-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4 \times 1\binom{n}{2} + 8 \times 3\binom{n}{4} + 12 \times 5\binom{n}{6} + + 2n(n-1)\binom{n}{n} = h(h-1)(2)^{h-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | !        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |

## **Mathematics Extension 1 Marker Comments**

#### **Question 8**

- a) i. Well done apart from some carelessness in using the product rule
- a) ii. Poorly done even though this could be done using the formula sheet
- a) iii. Some students reduced this to the quotient rule and ignored the necessity of using the logarithm derivative
- b) i. Some students answered 9! Instead of 8! . This was the circular problem!
- b) ii. Many students gave the number of arrangements rather than the required probability
- c) Some students have difficulty using the log laws
- d) Well done apart from some students having difficulty finding the required quadratic equation. Many did not dismiss -10 as a possible solution.

#### Question 9

- a) Students should be aware of less standard derivatives, which are still on the formula sheet.
- b) Where i) was well done, there were several common errors in ii), as it was a tricky question. The most common mistake was  ${}^{10}\text{C}_2 \times {}^{10}\text{C}_2 \times 16$ . This significantly overcounted, such that it was larger than the answer in i).
- c) The two most successful methods included the use of the general term and the (inefficient) expansion of the entire binomial. In both cases, students should ensure that they are answering the original question. Other common errors included leaving a negative, and not matching the powers to the instance of  ${}^9C_k$ .
- d) i) This was generally well done, whether students used the sine rule for the area of the triangle, or found the perpendicular height separately. Students should work on clearly (and efficiently) showing their working.
- ii) This is a fairly standard optimisation, and students should ensure that they are familiar with the requirements. A test to verify that you have found a maximum is always required. Students should also ensure that they answer the question: finding the **dimensions** of 2x and y. Moreover, many students were confused by answering the question to the nearest centimetre, as the dimensions are in metres.

#### Question 10

- a) Some students cannot solve (x-3)(5-x)>0. The most common incorrect answer was x>5 or x<3
- b) (i) most students cannot do product rule when differentiating  $x = t^2 e^{2-t}$  with respect to t
- c) Some students cannot apply pigeonhole principle
- d) (ii) some students could not find the value of k as they cannot solve a logarithmic equation.
- (iii) Some students could not get the correct answer as they cannot solve a logarithmic equation

#### Question 11

- a) Most were able to show that one root is the sum of the other two but some incorrectly found the sum of the roots one at a time, sum of roots two at a time and product of the roots these are on the reference sheet! Some students found one root and used long division to find the other two roots great alternative method to solving simultaneously.
- b) (i) This is a typical Advanced Mathematics question and many lost marks. Some students forgot that solving a quadratic equation gives two solutions,  $x = \pm 1$ . You must check the nature of stationary points either using the first derivative table or substituting into the second derivative. Coordinates of stationary points means you need to find the y-values too!
- (ii) Read the question you were asked to show the intercepts.
- (iii) To have an inverse function, there must be a 1-1 relationship between the x and y values i.e. the vertical and horizontal line must both be passed. Also the origin must be contained.
- (iv) Remember that the domain and range from the original function to the inverse swap. So the range from the domain restriction in part iii should be considered to find the domain of the inverse.
- (v) Poorly done overall. Those who realised to differentiate the inverse function with respect to y and find the reciprocal of  $\frac{dx}{dy}$  before substituting in  $y=-\frac{1}{2}$  had most success.

#### Question 12

- a) Many failed to use the log laws to simplify in order to be able to differentiate we cannot subtract one from a variable power, only a numerical power
- b) Had to consider cases but you don't have to choose from the 3 M's, they ARE THE SAME LETTER
- c) i. Many forgot to make the units the same change all to cm or to m BUT NOT A MIX OF BOTH you do not need to prove similarity in these cases
- c) ii. The rate was decreasing so it should have negative (not penalised) some forgot that  $\frac{a}{h}$  does not become ah
- d) Many non attempts successful students subbed both x=1 and x=-1 and added the 3 expressions together, OR recognised that for even values of n, the sum of the odd coefficients is equal to the sum of the even coefficients (PASCAL's TRIANGLE) just writing "there is symmetry" was not enough you had to justify what kind of symmetry and how to use it.